
Journal of Engineering Physics and Thermophysics, VoL 70, No. 6, 1997 

C A L C U L A T I O N S  O F  T U R B U L E N T  J E T S  W I T H  F I N E L Y  

D I S P E R S E D  S O L I D  A D M I X T U R E S  

E. F. Avdeev and I. A. Chusov  UDC 532.529 

We suggest a computational-experimental  method for determining the hydrodynamic characteristics of  a 

dust- laden gas jet. The method is based on P r a n d t l - M i e s e s  generalized variables. For this case we obtain 

an algebraic model  o f  turbulence which allows us to take into account the mutual  effect o f  phases and the 

initial conditions at the nozzle outlet. 

Methods of calculation for a jet with a finely dispersed solid admixture are in the development stage at 

present [I ]. Experimental data [2, 3 ] show that the presence of an admixture substantially changes the dynamic 

pattern of flow and is evidenced by an increase in the range of the jet and in its contraction. This indicates that 

an admixture influences both the turbulent jet structure and the character of the processes of turbulent mixing [4 ]. 

Analysis of the literature shows that the models of turbulence for free gas disperse flows can be divided 

into two groups. The first group involves generalization of the Prandtl mixing path length model. Here we should 

distinguish a model which makes it possible to obtain expressions for both the coefficients of turbulent viscosity 

and the turbulent analog of the Schmidt number proceeding from the same assumptions [ 1 ]. The sole inconvenience 

of the model described in [1 ] is the dependence of e and es on the magnitude of the eddy viscosity of a pure gas 

e0. This fact necessitates the inclusion in calculation of the problem for a pure gas jet with boundary conditions 

similar to those of the basic problem. For example, in [5] the problem of an axisymmetric jet was additionally 

solved and the turbulent viscosity coefficient e0 was determined from Sekundov's one-parameter model [1 ]. The 

second group of models is characterized by the absence of a general approach to the selection of hypotheses for the 

coefficients of turbulent transfer of phases. The correlation terms in the conservation equations for the carrying 

gas are simulated by two-parameter models, whereas for correlations of a "gas" of particles either additional 

relations are introduced or they are assumed to be proportional to the correlations for the gas [6 ]. Calculations 

carried out by employing the models of the first and second groups show a satisfactory agreement with the available 

experimental data. Nevertheless, the models of the first group are the most popular, which is probably due to the 

simplicity of the closing expressions and to the presence of a clear physical interpretation. 

At the present time, for simulating the behavior of heterogeneous mixtures with solid or liquid droplet 

admixtures the model of interpenetrating continua [7 ] has gained the widest use. According to this model, a discrete 

phase is replaced by a continuous medium with its own set of continuum parameters: density, velocity, etc. 

Moreover, to simulate the dynamic characteristics of a "gas" of particles, its own momentum and continuity 

equations are written. To obtain a numerical solution of the equations of transfer for a solid admixture, the methods 

can be used which are applied for solving ordinary boundary-layer equations. 

Calculation of the parameters of a polydisperse flow, when the admixture is represented by a large number 

of particle fractions, generates a need for solving the corresponding conservation equations, which leads to a con- 

siderable increase in computation time. One of the possible means of decreasing computational expenditures is 

application of the generalized analog of the Prandtl-Mieses transformation to conservation equations. This 

transformation is rather often and successfully applied to calculations of flows in a boundary-layer approximation, 

but it was used for the first time to calculate dust-laden gas jets. Among the advantages of this approach there are: 

1) elimination of the transverse velocity component; 2) possibility for transforming initial equations to the form of 

heat conduction equations due to which the singularity at the point x = 0 is eliminated. 
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We shall consider an axisymmetric turbulent discharge of a gas with solid particles from a nozzle of radius 

R 0 into a flooded space filled with a quiscent gas with the same physical properties. In this case the following 

assumptions are made: a) it is assumed that the dust-gas mixture is continuous and is described by a model of a 

two-velocity solid medium; b) slippage is taken into consideration only in the longitudinal direction; c) interaction 

between solid particles and the gas is taken into account by the resistance force; d) the admixture is represented 

by spherical particles of the same diameter. 

The equations of an axisymmetric stationary flow for the carrying gas and for the "gas" of particles in a 

boundary-layer approximation have the form: 
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The force of interphase interaction is determined by the expression 

N F x  = P C d Ps ( U - U s) [ U - Us l / (pp d) . 

The drag factor, taking account of the correction for the concentration of the flow, is [7 ] 

C d = (24/Rep + 4/~ / Rep + 0.4) (1 - ps /Pp)  -2"7 . 

The boundary conditions are written proceeding from asymptotic boundary-layer notions: 
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The system of equations (1)-(5) is augmented with integral conservation conditions of the momentum of the mixture 

and the mass of the admixture: 
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The stream functions for both phases are introduced satisfying the continuity equations (1) and (3): 
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and the new longitudinal coordinates are written in the form: 
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Applying formulas for changing to new variables: 
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the system of equations (1)-(5) is written in the form 
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The boundary conditions in the transformed coordinates are analogous to Eq. (6): 
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The solution of system of equations (10)-(12) was found numerically. To obtain the finite-difference 

analogs of the transformed equations, we used an implicit four-point scheme [8 ]. The linearization of the discrete 

analogs was made by the method of retarding coefficients. The global iteration process was constructed on the basis 
of the method of separate pivots [8 ]. 

For numerical solution we selected the coordinates (~2, g's) as the basic ones, since Eq. (12) does not contain 
turbulent transfer complexes. For this equation to be solved, we constructed a computational grid which is uniform 

in the longitudinal and lateral directions. The computational domain for solving Eqs. (10) and (11) was constructed 

on the basis of relations (8) and (9). The practice of calculations showed that application of the Prandtl-Mieses 
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Fig. I. Computational-experimental dependences of longitudinal coordinates: 

1) concentration of a solid admixture, 2) concentration of carrying gas, 3) 

concentration of "gas" of panicles. Curves, their approximations. 

generalized transformation made it possible to obtain a 30 % reduction in the time needed for one step along the 

marching coordinate. 

Equations (10) and (11) preserve the unknown complexes p2e and p2es that characterize the intensity of 

turbulent transfer, as well as the complex p2es/Sc t in implicit form. The expressions for these complexes can be 

obtained by the following computational-experimental technique. Equations (10)-(12) were solved using, as the 

initial values, the complexes p2e, p2e s, and p2ses/Sct, their values calculated by means of a model suggested in [6 ] 

for the distribution of the parameters at the nozzle outlet [1 ]. Then, in each step of calculation we selected 

iteratively values for which the integral conservation conditions (7) were satisfied. Using the results of calculation 

and the experimental data of [2], we constructed computational-experimental relations that connected the 

transformed and physical longitudinal coordinates for the three parameters U, Us, and Ps. A correspondence be- 

tween the transformed and physical coordinates was established by coincidence of the calculated and experimental 

values of the parameters. The relations constructed in this way were approximated by the series: 

= a  0 x +  ~ a t a r c t an (kx) ,  ~1 = b o x +  ~ b k arctan (kx) , 
k k 
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The values of the coefficients ak, b~, c/c, and z were found by the least-squares method. To approximate the graphical 

functions ~(x), ~l (x) it turned out to be sufficient to take into account two terms of the series and seven for ~2(x). 

Computational-experimental dependences for Ps, U, and Us are presented in Fig. 1. The curves represent their 

approximations by series (13). In accordance with Eq. (9), simple differentiation of series (13) gives expressions 

for the unknown complexes: 

2 kak 2 kbk 
p ~ = ~ o +  E , p~, =b0+  E , k (1 + k2x 2) k (1 + k2x z) 

(14) 
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Expressions (14) acquire physical meaning in the case of passage to the limit x ~ 0 or x ~ oo. In the first 

case, the sum of the coefficients of the series will reflect the initial turbulence of the jet. The passage x ~ oo 

corresponds to the process of the degeneration of turbulence, and the values of the coefficients ao, bo, and co 

correspond to the level of turbulence at an infinite distance from the jet exit. 

881 



fJP, 
u/o 
u~  

0.6 

O.4 

O.2 

I , , ,  | 

I0 20 50 40 

U/U 

at 

0.~ 

a4 

o 1o 20 X/ o 

Fig. 2. Comparison of the results of calculation with the experimental data of 
[2] for particles with sizes of 45 (a) and 67/~m (b): l) concentration of solid 

admixture ,  2) gas velocity, 3) velocity of "gas" of particles. Points,  
experiment; curves, calculation. 

For checking the applicability of expressions (14) to the simulation of gas-dust jet flows, we carried out 

calculations for different particle sizes. In this case the dynamic and geometric parameters of the jet at the nozzle 

outlet corresponded to the conditions of the experiment of [2 ]. A comparison of the axial distributions of the 

velocities for both phases and of the concentration of the admixture for particles with size d = 45/~m is given in 
Fig. 2a. The curves show the results of calculation. It is seen that the coincidence of the experimental and calculated 

values of the parameters is rather good. Figure 2b compares the calculated and experimental dynamic characteristics 

of a jet along the symmetry axis for particles with diameter d = 67/~m. It is seen that an increase in partice size, 

other conditions being equal, leads to elongation of the initial sections for the velocities of both phases and the 

concentration of the admixture, as well as to an increase in the range of the jet. 

The results of calculations presented in Fig. 2 make it possible to conclude that model (14) adequately 

describes the specific physical features of gas-dust flows and can be recommended for calculating flows with 
physicochemical processes. 

N O T A T I O N  

u, v, longitudinal and transverse velocity components; x, r, space coordinates; R0, radius of nozzle; e, 

coefficient of turbulent viscosity; Cd, drag factor; Rep, Reynolds  number  based on slip velocity (Rep = 

(U - Us)d/v);  Sct, turbulent Schmidt number; d, diameter of particles; pp, physical density of particles;/9, density; 
% stream function; ~, ~1, ~2, transformed longitudinal coordinates; ak, bk, ck, coefficients of series; k, z, constants; 

N, number density of particles. Subscripts: s refers to a solid phase; 0, parameter at the nozzle outlet; p, parameter 

determined from the physical characteristics of the admixture. 
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